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This is the second paper on finite exact representations of certain polynomials in
terms of Hermite polynomials. The representations have asymptotic properties and
include new limits of the polynomials, again in terms of Hermite polynomials. This
time we consider the generalized Bernoulli, Euler, Bessel, and Buchholz polynomi-
als. The asymptotic approximations of these polynomials are valid for large values
of a certain parameter. The representations and limits include information on the
zero distribution of the polynomials. Graphs are given that indicate the accuracy of
the first term approximations.  © 1999 Academic Press

1. INTRODUCTION

Generalized Bernoulli, Euler, Bessel, and Buchholz polynomials of
degree n, complex order w and complex argument z, denoted respectively
by B/(z), E/Mz), Y(z) and P/(z), can be defined by their generating
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functions [[11], chap. 6],

[[4], page 181],
1 2 )#egw/(1+ 1-2zw)
VI—2zw \ 1 +V1- 22w
=§O-L":—1(!i)w", Raw| <1, (3)

and [[2], sec. 3], in a slightly different notation,

z(cotw—1/w)/2 sin w : - n
e’ B bl B Y. PH(z)w", wl < . 4
n=0

The generalized Bernoulli and Euler polynomials play an important role
in the calculus of finite differences. In fact, the coefficients in all the usual
central-difference formulae for interpolation, numerical differentiation
and integration, and differences in terms of derivatives can be expressed in
terms of these polynomials [11]. Many properties of these polynomials can
be found in [[3], chap. 6], [[5], vol. 1, chap. 1], [10], and [11]. An explicit
formula for the generalized Bernoulli polynomials can be found in [12].
Asymptotic expansions in terms of elementary functions and in terms of
gamma and polygamma functions are obtained in [16]. Properties and
explicit formulas for the generalized Bernoulli and Euler numbers can be
found in [9], [14], [15] and references therein.

The generalized Bessel polynomials form a set of orthogonal polynomi-
als on the unit circle in the complex plane. They are important in certain
problems of mathematical physics; for example, they arise in the study of
electrical networks and when the wave equation is considered in spherical
coordinates. For a historical survey and discussion of.many interesting
properties, we refer to [6]. New asymptotic expansions of Y/(x) (and its
zeros) for large values of n are given in [17].

Buchholz polynomials are used for the representation of the Whittaker
functions as convergent series expansions of Bessel functions [2]. They
appear also in the convergent expansions of the Whittaker functions in
ascending powers of their order and in the asymptotic expansions of the
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Whittaker functions in descending powers of their order [7]. Explicit
formulas for obtaining these polynomials may be found in [1].

In our first paper [8] it has been shown that Jacobi, Gegenbauer,
Laguerre, and Tricomi-Carlitz polynomials have asymptotic representa-
tions in terms of the Hermite polynomials

2! (_l)k n-2k
H,,(x) =n! 2_;0 m(zx) .

These asymptotic representations include well-known limits of the polyno-
mials in terms of the Hermite polynomials, and provide a powerful tool for
approximating the zeros of these polynomials in terms of the zeros of the
Hermite polynomials in the asymptotic limit [8].

The polynomials of the previous paper are all orthogonal on a set of the
real line. The present group is quite different. Only the Bessel polynomials
are orthogonal, but not in the standard sense: they are orthogonal on the
unit circle. In a certain sense the polynomials of the present group become
orthogonal if the parameter u becomes large. We give similar asymptotic
representations for the new group as in the previous paper for the
asymptotic limit | u| — . From these representations we can derive

4 n/2 w m
Lol —_ =
B} ( 5 + \/ ¢ z) H,(z),

lim(—-—

Mm% M,
8 n/2 © m

lim | —| Ef|S +y/Sz] =

“1}31_#(”) Il(2 22) HH(Z)7

2, 2 i
+iy —z||=H/(z),

® B )

lim i"(zﬂ)"/zxr[m—
IJ_'—')%

(6 1
lim | —| Pr(-2 6,u,z)=;YH,,(z).

L% IJ_.

From these limits we can obtain approximations for the zeros of these
polynomials in the asymptotic regime.

In the following section we give the principles of the Hermite-type
asymptotic approximations used in this paper. In later sections we apply
the method to obtain expansions for the generalized Bernoulli and Euler
polynomials, and the Bessel and Buchholz polynomials. We also obtain
estimates of their zeros for large w.
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2. EXPANSIONS IN TERMS OF
HERMITE POLYNOMIALS

The Hermite polynomials have the generating functic
2w = H.(2)

e w? Z

n=0

ol wh, z,w e

which gives the Cauchy-type integral

dw

! )
H"(Z) = __-/?622W7W ;;—r;—-t-_l’

where % is a circle around the origin and the integr
direction.

The polynomials defined in (1)—(4), as well as man
polynomials, may be defined by a generating function

F(z,w) = L p(2)w",
n=10

where F: C X C — C is analytic with respect to w
contains the origin. We assume that F(z,0) = p,(z
polynomials p,(z) are independent of w.

We have the Cauchy-type integral representation

1 dw
p(2) = ﬁf‘_f’(zaw)v—v‘,m,

where & is a circle around the origin inside the ¢
analytic (as a function of w).
We write the generating function F(z,w) of p,(2) i

F(Z, W) — eA(z)w~B(z)w2f(z’w)’

where A(z) and B(z) are independent of w, and it fc

1 2 (
= — A(zyw - B(zyw-¢ ¢
pn(z) i Le f(Z,W)W

The function f is also analytic around the origin w =
expand

f(z,w)

1+ [p[(z) —A(z)]w

1
+| pa2) —A(2)pi(2) + B(2) + 5

ow

= Y c,(z)wk.

k=0



HERMITE POLYNOMIALS IN ASYMPTOTIC REPRESENTATIONS 461

Substituting this in (8) and using (5), we obtain the finite expansion

o (Bl 5D H) A
Pu(2) = (B(2)) EO(B(Z))W -0 "B

, (10)

because terms with k& > n do not contribute to the integral in (8). If B(z)
happens to be zero for a special z-value, say z,, we write

3 n - ci(zg)
pn( ()) [A(ZO)] kX=:0 [A(ZO)]k(n ‘—k)' * (11)

In the examples considered in the following sections, the choice of A(z)
and B(z) is based on our requirement that ¢(z) = ¢,(z) = 0, in order to
make the function f(z,w) close to 1 near the origin [note that f(z,0) = 1].
Then, the generating function F(z,w) is close to the generating function
of the Hermite polynomials. Using ¢,(z) = 1 and requiring ¢,(z) = ¢,(z)
= 0, we have, from (9),

A(z) =p(2),  B(2) = 1pi(2) = ps(2). (12)
We can summarize the above discussion in the following.

PROPOSITION 2.1. Consider the polynomials p,(z) defined in (6) by a
generating function F(z,w) analytic in w = 0 and normalized in the form
F(z,0) = 1. Then, they may be represented as the finite sum (10) if p>(z) -
2p,(2) # 0, and as the finite sum (11) if pi(z,) — 2ps(z,) = 0. The func-
tions c,(z) are the coefficients of the Taylor expansion of

2 )
F(z,w)exp((2p(2)° = po(2))w? = p(2)w)
atw =0,c,=1, ¢, = ¢, =0 and H, are the Hermite polynomials.

In the following sections we verify if the finite sum in (10) yields
asymptotic representations for the generalized Bernoulli, Euler, Bessel,
and Buchholz polynomials. The special choice of A(z) and B(z) given in
(12) is crucial for obtaining asymptotic properties. To prove these proper-
ties we will use the following lemma.

LemMa 2.1, Let ¢p(w) be analytic at w = 0, with Maclaurin expansion of
the form ¢p(w) = uw"(a, + aw + a,w? + ) + bw + byw* + -+, where
n is a positive integer, a,, b, are complex numbers that do not depend on the
complex number ., a, # 0; let ¢, denote the coefficients of the power series of
e that is, e?™) = T _, c,w*. Then

e = @(IMHR/HJ)’ QL= o,
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Proof. The proof follows from expanding e®") =¥
substituting the power series of ¢ and collecting equal pow

3. GENERALIZED BERNOULLI POLYNOM

From (1) we obtain the following Cauchy-type integral f
ized Bernoulli polynomials

n! w ke dw

Bi(z) = — ,
n(z) Zﬂifg‘(ew _ 1)# wrl+l

where & is a circle around the origin with radius less than :
that F(z,w) = w*e"”*/(e” — 1)* assumes real values for r
w and u.

We have

Bd-L(z)=1’ BI#(Z)=Z"'I“2L‘, Bé"’(z):z’—’_”‘z_

Hence, by (12) and p,(z) = B*(z)/n!,

4 2
Al(z) =z — — -z
(Z) z 2 ’ B(z) 24’
and by (10),
n/2 n c 24 k/2 \/g
BX(z2) =n!(i) __"(_’Li - H, . _(
ul E-n s

Observe that this representation shows the symmetry
respect to the point z = 3 pu.

The coefficients ¢,(u) of the expansion are given i
lemma.

LEMMA 3.1. The odd coefficients ¢, () in the expansion

C2n+l( /‘L) =0 Vn = 0’



HERMITE POLYNOMIALS IN ASYMPTOTIC REPRESENTATIONS 463

and the even ones are independent of z; they are given for n = 2 by the
recurrence

pon (2k+1)(k=3)+6

c2n( Iu‘) = 12n kgz (2k + 1)' c2(n-—k)( I'L)
1.2 (n-k)
R mcun-k)( ®)s (15)

with c,( 1) = 1, ¢,(n) = 0 and satisfy

e () =o(ul"?),  lul - e (16)

Proof. Using equation (7), the function f(z,w) of the generalized
Bernoulli polynomials reads

wp.eu(1+w/12)w/2 S
W)= ——— = c k. 17
few) = — e = Ledw (7
This is an even function in the variable w and (14) follows. It is indepen-

dent of z and so are the coefficients ¢, (which only depend on w).
Moreover, it satisfies the differential equation

"

1 1 w Y N d
1+ (—2— i E)(e - 1)]f(z,w) + (e — 1)Ef(z,w) =0,

and introducing the expansion (17) [with ¢,,, () = 0] in this differential
equation we obtain (15). The function f(z,w) can be written in this case in
the form

1
= pwt e (w) - 2
f(zaw) 4 > ¢\(w) 2880 +ﬁ(w )’ w = O’

and ¢,(w) does not depend on u and z. Hence, the proof of (16) follows
from Lemma 2.1. § .

PROPOSITION 3.1.  The generalized Bernoulli polynomials B}(z) have the
finite expansion in terms of Hermite polynomials

Bt (z) = (—2"—1:‘:)”/21'1,,(4') + rz!(—i)”/2 l%jcu—( P«)(%)k%’

24) 2
(18)
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where

V6 (2~ u/2)
{= 7 (19)
I
and ¢, () are given in (15). This is actually an asymptotic expansion of
B/(z) for | w| — o with respect to the sequence u!*/*1*  uniformly with
respect to {.

Proof. (18) follows trivially by using (13) and Lemma 3.1. The asymp-
totic property of (18) follows from (16). If || is bounded, the combination
¢, () u™* in (18) gives the asymptotic nature for large values of | ul; if ||
is not bounded, then the property H, () = @({") gives extra asymptotic
convergence in the sum in (18). [

Figure 1 shows the accuracy of the approximation

s = (35 [

24 (20)

for n = 10, real z and several values of w.

3.1. Approximating the Zeros

When computing approximations of the zeros of the generalized
Bernoulli polynomials for large values of w we start with the zeros of the
Hermite polynomial H,(¢) in (20).

Let b, ,, and h, , be the mth zero of B/(z) and H,(z), respectively,
m = 1,2,...,n. Then, for given u and n we take the relation for / given
in (19) to compute a first approximation of b, ,, by writing

w w
bn‘m 2 + 6 hn,m’
For p = 10,20,30 and » = 10, the best relative accuracy in the zeros is
~ 1073 and the worst result (for the largest zero) is ~ 10~ 2. For p = 40,50
it oscillates between 107° and 107 *, whereas for u = 100 it oscillates
between 10™* and 107°.

4. GENERALIZED EULER POLYNOMIALS

From (2) we obtain the Cauchy-type integral for the generalized Euler
polynomials
£ n! 2Hem: dw
n Z) - 27Tl/:¢,(ew + l)i’- wntl’
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FIG. 1.

Solid lines represent Bf5(x) for several values of p, whereas dashed lines
represent the right-hand side of (20).

where # is a circle around the origin with radius less than 7. We assume
that F(z,w) = 2#e"*/(e” + 1)* assumes real values for real values of z,
w, and .

We have

y7s -1
Ef(z) =1, Ef(z) =z — 5 Ef(z) =2 -pz+ ﬂ%—)
Hence, by (12) and p,(z) = E*(z)/n!,

A(z) =z — -

5 B(2) -

| ®

It follows from (10) that

Y k) (82 V2(z- /)
R e R e I
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FIG. 1. Continued.

where the coefficients c,(w) of the expansion are given below. This
representation shows the symmetry of E!(z) with respect to the point z
1
= 3H-
We have the following results. The proofs are as in the case of the
Bernoulli polynomials.

LeEMMA 4.1.  The odd coefficients c¢,( w) in the expansion (21) vanish,

Couar(B) =0 Vn =0, (22)
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and the even ones are independent of z; they are given for n > 2 by the
recurrence

no 2k-3
(1) = ’g— {: '(‘i}c—l)_,'czm -0 m)
1 2 (k-=n-1)
Yo B Ty o) (D)

where c\( ) = 1, c,(n) = 0, and satisfy

CZn( /‘L) = ﬁ( ll'l”/zj): I,U'l - ©, (24)

PROPOSITION 4.1. The generalized Euler polynomials E*z) have the
finite expansion in terms of Hermite polynomials

“ 3 7 n/2 " n/2 n/2] n—’k(g)
Ern = (5) mo m(g) T T eutn ) T
(25)
where
_V2(z-w/2) (26)

e

and ¢, (w) are given in (23). This is actually an asymptotic expansion of E}(z)
for | ul — o with respect to the sequence u!*/*'~*, uniformly with respect

to {.

Figure 2 shows the accuracy of the approximation

wiy = [ H "2 V2 (z - p/2)
Ex() = (%) Hn(-—————ﬁ ) @)

for n = 10, real z and several values of u.

4.1. Approximating the Zeros
Let e, and h, , be the mth zero of E/(z) and H,(2), respectively,

n,m n,m

m = 1,2,...,n. Then, for given u and n we take the relation for { given
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(b) p=120
FIG. 2. Solid lines represent Ef;(x) for several values of u, whereas dashed lines
represent the right-hand side of (27).

in (26) to compute a first approximation of e, , by writing

2 I
Coom ™ _2_ + E- hn,m'

The accuracy is as in the case of the generalized Bernoulli polynomials.

5. GENERALIZED BESSEL POLYNOMIALS

From (3) we obtain the following Cauchy-type integral for the general-
ized Bessel polynomials
"
n! 2 2w/ YU 25w dw

Y !
H0 = o T T Wt

where @ is a circle around the origin with radius less than [1/(2z)l.
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FIG. 2. Continued.

We have

Yi(z) =1, Y#(z) =302+ (p+2)],
YE(z) = 4[4 + 4+ Bz + {p(p+7) +12)27).

Hence, by (12) and p,(z) = Y*(z)/n!,

!
2

2+ (m+2)z], B(z)=—%[4+(3/¢+8)z].
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It follows from (10) that

“(7) = n i e Glzop) H, (L) _ A(z)
VE(z) = B(2)] ,Eo[zs(z)]"/2 (n—k)!’ ¢ 2y/B(z)

(28)

where the coefficients ¢, (z, u) of the expansion satisfy the properties
given in the following lemma. We introduce the notation

* 2k 11
yw)=V1-2zw =1- Y z'pw*, b, = -—(—) .
k=1 2k1\2 )i

LEMMA 5.1.  The coefficients ¢,(z, u) in the expansion (28) are given by
the recursion relation

16(k + 1)cy 4,
= 48kzc, — 28(k — 1)z%c,_, + 4[6 + (18 — k + 5u)z]z%¢,_,
—[32 + (64 + 3(k = 3) +25u)z] 2%, _;

k-4

+23 [(4jbk+1—j
i=0

- 8]b;\_j - /-Lbk—l*j)zk+l~j
—2(4+3[,L+ 8Z)Zk‘jbk_2_j]CI‘s (29)

where ¢c; = 0 if j < 0 and empty sums are zero with c(z, u) = 1, ¢((z, p) =
c5(z, w) = 0, and they satisfy the asymptotic estimate

ez, ) = E(uAY), Il e, (30)
Proof. The function
e—Aw+Bw3+2w/(1+ 1-2zw)

V1 —2zw

satisfies the differential equation

f(z,w) =

2 M
1+\/l—2zw)

Y1 +y)f = [@Bw — A)y (1 +y)7 + 2y3(1 +y) + 2zmy

+2(1 +y)” + (1 + )] f.



HERMITE POLYNOMIALS IN ASYMPTOTIC REPRESENTATIONS 471

Then, writing f(z,w) = X;_, ¢,w" we obtain the recursion (29) upon
substitution. The function f(z,w) can be written in the form

f(z,w) = ereiems bz,
where ¢, ¢, do not depend on u, with

1 3
é(z,Ww) =In—mem———e — —zw ~ —22n?

1+ 12z 2773%

S
=w3[~1-2—z3 +ﬁ(w)}, w—0

and
$(z,w) =w3[E(8z +3)22+F(w)], w0
Hence, (30) follows from Lemma 2.1.

The first few terms are c(z, u) = 1, ¢/(z, p) = ¢,(z, w) = 0, and

2
z
c(z,p) = 1—2-[(5;1. + 16)z + 6],

3
z
ci(z,p) = -62[(35;/. + 128)z + 40],

4

z
cs(z, p) = %[(63/.4, + 256)z + 70].

PROPOSITION 5.1. The generalized Bessel polynomials Y!(z) have the
finite expansion in terms of Hermite polynomials

() = n/2 5oz ) Hy (0
Yi(z) = [B(2)] Hn(§)+”!k§3 (B(2)] (n-K)!’ (31)

where { is given in (28). This is actually an asymptotic expansion of Y(z) for
| | = o and holds for fixed values of z and n.

Proof. (31) follows trivially from (28) and using ¢, =1, ¢, = ¢, = 0.
The asymptotic property follows from (30) and by using H,(z) = @(z").
|

5.1. Approximating the Zeros

Let y, ,, and &, , be the mth zero of Y*(z) and H,(z), respectively,
m =1,2,...,n. Then, for given u and n we can compute a first approxi-
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mation of y, ,,. We obtain, inverting the relation for ¢ given in (28),
pr g+ 1=0,p=4 W +4p+4+20°0Cp+8)],

g=pn+2+27>%
This gives the relation

—q+i/2(p+ 4 -207)

2(¢) = 5

Using this with { = &, ,, we obtain a first approximation of z =y, .

The zeros of Y*(z) are complex, in contrast with those of the classical
orthogonal polynomials, where the zeros are real and inside the domain of
orthogonality. Information on the zeros distribution of Y*(z) for large
values of w seems not to be available in the literature. In Fig. 3 we show
the curves z({) for £ € [—/2n + 1,V2n + 1], in which interval the zeros
h,  of the Hermite polynomial H,({) occur [13].

6. BUCHHOLZ POLYNOMIALS

From (4) we obtain the following Cauchy-type integral for the Buchholz
polynomials

1 scotw— 1wy sinw\ " dw
PHz) = 5= [ € : —

2i e w wi

where ¢ is a circle around the origin with radius less than .

i 0.005

-0.025 0.005

~0.005 —

FIG. 3. The curves in the z-plane under the mapping { — z({) are the images of the
intervals [—/2n + 1,v2n + 1 ] where the zeros of the Hermite polynomial H,({) occur. We
take n = 10 and show the curves (from left to right) for p = 100,200, ..., 500.
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We have
z 1
Pi(z) =1, PMz)=-—, P{z2)=—-7(12p—2%).
6 - 72
Hence, by (12) and p,(z) = P*(z2),

A(z) = —%, B(z) =

O\.I =

It follows that

(B el(zm) (6 k/2 —
ro- (57 Ea56l) ) @

6
where the coefficients c¢,(z, u) of the expansion satisfy the properties
given in the following lemma.

LEMMA 6.1.  The first six coefficients c,(z, u) in the expansion (32) are

z
colz,p) =1, ez, ) =c(z,m) =0, c5(z,pn) = ~ 50"
w z 7z — 40
C4(Z,I.L) - ——l-gd’ CS(Z7I'L) - _§Z§7 C()(z’/“l’) - 113400
(33)
and the remaining ones satisfy, for k = 1,
c(zom) = (WA £ 2Pl 4z e (34)

Proof. Using equation (7), the function f(z,w) of the Buchholz polyno-
mials can be written in the form

f(Z, W) = e#¢[(l,w)+ ¢’3(Z.w)’
where ¢, ¢, do not depend on u, with

sin w

é(z,w) =In

1
+ B(z)w? = W4['T% + ﬁ(wz)}, w—0

w
and
by(z,w) =z(cotw — 1/w) /2 — A(z)w =2w*[ — 55 +e(w)], w—o.

Hence, (34) follows from Lemma 2.1. §
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FIG.4. Continued.

where

z

Y 4D

the first six coefficients c,(z, ) are given in (33). This is actually an
asymptotic expansion of P*(z) for | ul + |z| — .

Proof (36) follows trivially from (32) and using ¢, =1, ¢; = ¢, = 0.

The asymptotic property follows from Lemma 6.1 and by using H,(z) =
e(z"). 1
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(b) p=40
FIG. 4. Solid lines represent Pfj(x) for several values of w, whereas dashed lines

represent the right-hand side of (37) with z = x.

Figure 4 shows the accuracy of the approximation

pee) = () 57 (39)

for n = 10, z = x and several values of u.

PROPOSITION 6.1.  The Buchholz polynomials P}(z) have the finite expan-

sion in terms of Hermite polynomials

p w2 A" L 6\** H,_({)
T e

(36)
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6.1. Approximating the Zeros

We proceed in a similar way as in the previous cases. Let p, , and A,
be the mth zero of P/(z) and H,(z), respectively, m = 1,2,...,n. Then,
for given u and n we take the relation for { given in (37) to compute a
first approximation of p, ,, by writing

pn,m ~ "2\/_‘;/1;””-

The accuracy of this approximation increases for increasing w. For exam-
ple, for = 20 or 40 and n = 10, the relative accuracy in the zeros is
~ 1072, For w = 100 or 200, the relative accuracy oscillates between 102
and 1077,

7. CONCLUSIONS

Finite approximations of the generalized Bernoulli, Euler, Bessel, and
Buchholz polynomials in terms of Hermite polynomials have been given.
These are also asymptotic expansions of these polynomials with respect to
certain sequences of the order parameter u for | u| — =. For large | ul, the
nth order polynomials become, up to a factor, the nth Hermite polynomial
of a certain variable. From these approximations in terms of Hermite
polynomials we have obtained asymptotic estimates of the zeros of these
polynomials.
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